
COT 6405 Introduction to Theory of
Algorithms

Topic 13. Binary Search Tree

11/3/2016 1

Binary Search Trees

• Binary Search Trees (BSTs) are an important
data structure for dynamic sets

• In addition to satellite data, nodes have:

– key: an identifying field inducing a total ordering

– left: pointer to a left child (may be NULL)

– right: pointer to a right child (may be NULL)

– p: pointer to a parent node (NULL for root)

2

Node implementation

11/3/2016 3

data key

Left right

data key

Left right

parent

parent

Null

Binary Search Trees

• BST property: Let x be a node in a binary search tree.
If y is a node in the left subtree of x, then y.key <
x.key. If y is a node in the right subtree of x, then
y.key > x.key. Different BSTs can constructed to
represent the same set of data

4

6

3 7

2 5 8

8

7

5

2

3

6

Average case O(lgn) worst case O(n)

Walk on BST

• A: prints elements in sorted (increasing) order
InOrderTreeWalk(x)

InOrderTreeWalk(x.left);

print(x);

InOrderTreeWalk(x.right);

• This is called an inorder tree walk

– Preorder tree walk: print root, then left, then right

– Postorder tree walk: print left, then right, then
root

5

Example

• What is the result for in-order walk, pre-order
walk, and post-order walk?

11/3/2016 6

6

In order: 2 3 5 6 7 8

Pre order: 6 3 2 5 7 8

Post order: 2 5 3 8 7 6

3 7

2 5 8

Analyze a tree walk in recursion

• Theorem: If x is the root of an n-node tree,
then the call INORDER-TREE-WALK(x) takes
Θ(n) time.

• Proof: suppose left subtree of x has k nodes
and right subtree has n - k - 1 nodes. The
running time T(n) is T(n) = T(k) + T(n - k - 1) +
d, where d reflects the time to execute
INORDER-TREE-WALK(x), exclusive of the time
spent in recursive calls.

11/3/2016 7

Proof (Cont’d)

• We use the substitution method to show that
T(n) = O(n). Assume T(k) ≤ 𝑐𝑘

• T(n) = T(k) + T(n - k - 1) + d

≤ 𝑐𝑘 + 𝑐(𝑛 − 𝑘 − 1) +d

= cn – c +d

≤ 𝑐𝑛 if c ≥ d

Use the same method, we can prove that T(n) =
Ω (n). Thus, T(n) = Θ(𝑛)

11/3/2016 8

Operations on BSTs: Search

• Given a key and a pointer to a node, returns
an element with that key or NULL:
TreeSearch(x, k)

if (x = NULL or k = x.key)

return x;

if (k < x.key)

return TreeSearch(x.left, k);

else

return TreeSearch(x.right, k);

9

Operations on BSTs: Search

• Here’s another function that does the same
Iterative-Tree-Search(x, k)

while (x != NULL and k != x.key)

if (k < x.key)

x = x.left;

else

x = x.right;

return x;

• Which of these two functions is more
efficient?

10

Example

• Search for 5 and 8

11/3/2016 11

6

3 7

2 5 8

BST Operations: Minimum

• How can we implement a Minimum() query?

TREE_MINIMUM(x)

while x.lef <> NIL

x = x.left

Return x

• What is the running time?

• Minimum Find the leftmost node in tree

• Maximum  find the rightmost node in the
tree

12

BST Operations: Successor
• Successor of x: the smallest key greater than key[x].

• What is the successor of node 3? Node 15? Node 13?

• What are the general rules for finding the successor of
node x? (hint: two cases)

13

BST Operations: Successor

• Two cases:

– x has a right subtree: its successor is minimum
node in right subtree

– x has no right subtree: x must be on the left sub
tree of the successor such that x <= successor. So
the successor is the first ancestor of x whose left
child is an ancestor of x (or x)

• Intuition: As long as you move to the left up the
tree, you’re visiting smaller nodes.

14

15

BST: Find Successor of a Node
Find Successor of 65

44

29

28

32

54 82

65 97

8817

80

76

If the right sub-tree of x is not empty, the successor of x

is the leftmost node in its right sub-tree.

16

BST: Find Successor of a Node
Find Successor of 32

44

29

28

32

54 82

65 97

8817

80

76

If the right sub-tree of x is empty, the successor of x is

the lowest ancestor of x whose left child is also an

ancestor of x

17

Find Successor Algorithm for BST with
pointers to parents

// Returns node in BST that is the successor
// of node x, or NIL if no successor

Tree-Successor(x)
if x.right  NIL

then return Tree-Minimum(x.right)

y = x.p
while (y  NIL and x == y.right) //to left up

x = y

y = y.p // move up one node

return y

BST Operations: predecessor
• Predecessor of x: the greatest key smaller than key[x].

• What is the Predecessor of node 6? Node 7?

18

BST Operations: predecessor

• Two cases:

– x has a left subtree: its predecessor is maximum
node in left subtree

– x has no left subtree: x must be on the right sub
tree of the predecessor such that x >=
predecessor. So the predecessor is the first
ancestor of x whose right child is an ancestor of x
(or x)

19

Operations of BSTs: Insert

• Adds an element x to the tree

– the binary search tree property continues to
hold

• The basic algorithm

– Like the search procedure above

– Use a “trailing pointer” to keep track of where you
came from

• like inserting into singly linked list

20

BST Example: Insert C

• Example: Insert 4

21

6

3 7

2 5 8

4

22

Iterative Insertion Algorithm for BST with
pointers to parents

Tree-Insert (T, z) // Inserts node z into BST T

y = NIL

x = root[T]

while x  NIL

y = x

if z.key < x.key

then x = x.left

else x = x.right

z.p = y

if y == NIL // If tree T was empty

then T.root = z // New node is root

else if z.key < y.key

then y.left = z

else y.right = z

BST Search/Insert: Running Time

• What is the running time of TreeSearch() or
TreeInsert()?

• A: O(h), where h = height of tree

• What is the height of a binary search tree?

• A: worst case: h = O(n) when tree is just a
linear string of left or right children

23

Sorting With Binary Search Trees

• Informal code for sorting array A of length n
BSTSort(A)

for i=1 to n

TreeInsert(A[i]);

InorderTreeWalk(root);

• What will be the running time in the

– Worst case?

– Average case?

24

BSTsort example

11/3/2016 25

• Example:

3

1 8

2 6

5 7

3 1 8 2 6 5 7

It’s similar to quicksort

with Pivot = A[0]!

Sorting with BSTs

• Which do you think is better, quicksort or
BSTsort? Why?

• Answer: quicksort

– Sorts in place (why BSTsort is not in place?)

– Doesn’t need to build data structure

26

BST Operations: Delete

• Several cases:

– x has no children:

• Remove x

• Set parent’s link NULL

– x has one child:

• Replace x with its child

• Set the child’s link NULL

– x has two children:

• replace x with its successor

• Perform case 0 or 1 to delete the successor

F

B H

KDA

C

Example: delete K

or H or B

27

BST Operations: Delete

• Why will case 2 always go to case 0 or case 1?

• Answer: because when x has 2 children, its
successor is the minimum on its right subtree

– The successor is the leftmost node on the right
subtree

– The successor either has no children or has the
right child node only

– Why can’t the successor have two children nodes
or the left child node?

• Because the successor should be the smallest
28

Case 2: BST property

• How to prove that replacing x with its
successor still maintains the BST property?

– Nodes on the left subtree are smaller than the
successor

– Nodes on the right subtree are greater than the
successor

– If the successor is the left child of the parent, it is
smaller than the parent.

– Otherwise, it is larger than the parent

11/3/2016 29

30

Deletion of Node with Zero or One Child

Delete 82 44

29

28

32

54 82

65 97

8817

80

76

74
Bypass the node to be deleted by

setting its parent to point to its

child

31

Deletion of Node with Two Children

Delete 65 44

29

28

32

54 82

65 97

8817

80

76

74

74

Step1: Overwrite the element of the

node to be deleted with the minimum

element of its right sub-tree

32

Deletion of Node with Two Children

Delete 65 44

29

28

32

54 82

74 97

8817

80

76

74
Step2: Recursively delete the

node that contains the minimum

element of its right sub-tree
Delete this

node

33

Tree-Delete (T, z) // Deletes node z from BST T
x = NIL
if z.left == NIL or z.right == NIL

then y = z
else y = Tree-Successor(z)

if y.left  NIL
then x = y.left
else x = y.right

if x  NIL
then x.p =y.p

if y.p == NIL
then root[T] = x

else if y == p[y] .left
then p[y] .left = x
else p[y] .right = x

if y  z
then z.key = y.key

return y

BST Summary

• BST is one of the most useful tools for
maintaining dynamic sets

• Performance bound  O(h), tree height h

• Difference between BST and Min/Max heap

34

